Sarah Childs, PhD

PhD Department of Medical Biophysics University of Toronto, Canada

Sarah Childs

Areas of Research

Genetics of blood vessel development; precision medicine; developmental biology
We are interested in angiogenesis, the process by which new blood vessels develop. Blood vessels first develop as naked endothelial tubes, and then acquire a coating of ‘mural’ cells (either smooth muscle cells or pericytes). Dysfunctional vessels underlie a large number of serious diseases. We focus on using developmental biology to tease out the signals that grow and stabilize new blood vessels as a means to potential therapy for blood vessel disorders.
Vascular patterning
Blood vessels are customized for delivery of oxygen and nutrients to different organs with different architectures and metabolic needs. How do blood vessels acquire organ-specific patterns? In this project we examine the normal patterning of blood vessels during development and the molecular pathways that control their pattern. We also examine the role of patterning genes such as the PlexinD1 receptor to determine how it guides vascular development using genetic analysis of ligands and signalling pathways. We have a strong interest in GTPase control of the actin cytoskeleton in vascular development, and their particular roles in diseases such as vascular malformation.
Vascular stabilization
The origins of mural cells are not well understood. In the head, mural cells are thought to originate in neural crest cells, but how do they migrate to specific vessels and what signals allow them to contact and ensheath endothelial cells? In this project we examine the genetic control of mural cell development. Using transgenic smooth muscle and pericyte marker lines we trace mural cell migration in real time. Loss of mural cell attachment to endothelial cells results in brain hemorrhage. We have developed mutant animals with defective vascular stabilization that are models of both hemorrhagic and ischemic stroke.
microRNA control of smooth muscle differentiation
microRNAs are small RNAs that exert control by binding to mRNAs and blocking translation. We have demonstrated the role of several microRNAs on smooth muscle maturation. In this project, we are exploring how single microRNAs control multiple target genes to control development. We are also exploring how multiple microRNAs impinge on the same target mRNA to finely tune its expression.
The zebrafish model
We use zebrafish as a model system because as a vertebrate, their cardiovascular system is very similar to that of mammals. Furthermore, there is close similarity from a genetic point of view. To date, genes that have been found to be important for zebrafish vascular development have also been found to be important for human or mouse vascular development. Zebrafish are a common tropical fish which develop as transparent, externally fertilized embryos. We can observe their development during all stages of embryogenesis under a microscope. This allows us to do very detailed screens for subtle genetic defects, and is in contrast to mammals which develop in utero and are inaccessible. The capacity for live confocal imaging of development using this model is outstanding.

Supervising degrees

Biochemistry and Molecular Biology Doctoral: Accepting Inquiries
Biochemistry and Molecular Biology Masters: Accepting Inquiries

Working with this supervisor

Seeking strong candidates with a BSc or MSc degree and a background in genetics, developmental biology, biochemistry and molecular biology. Research experience is required.

Contact this supervisor

Complete the following form if you are interested in working with this supervisor for your Graduate Program. All fields are required, unless indicated otherwise.